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Abstract: The behavior of  two parallel symmetric cracks in piezoelectric materials under 

anti-plane shear loading was studied by the "Schmidt method for  the permeable crack face 

conditions. By using the Fourier transform, the problem can be solved with two pairs of 

dual integral equations in which the unknown variable is the jump of the diplacement across 

the crack surfaces. These equations were solved using the Schmidt method. The results 

show that the stress and the electric displacement intensity factors o f  cracks depend on the 

geometry of  the crack. Contrary to the impermeable crack surface condition solution, it is 

found that the electric displacement intensity factors for  the permeable crack surface 

conditions are much smaller than the results for  the impermeable crack surface conditions. 

Key words: piezoelectric material; parallel crack; Schmidt method; dual-integral equation; 

stress and electric displacement; intensity factors 

CLC number: O345.51 Document code: A 

I n t r o d u c t i o n  

It is well-known that piezoelectric materials produce an electric field when deformed and 

undergo deformation when subjected to an electric field. The coupling nature of piezoelectric 

materials has attracted wide applications in electric-mechanical and electric devices, such as 

electric-mechanical actuators, sensors and structures. When subjected to mechanical and electrical 

loads in service, these piezoelectric materials can fail prematurely due to defects, e . g .  cracks, 

holes, etc. arising during their manufacture process. Therefore, it is of great importance to study 

the electro-elastic interaction and fracture behavior of piezoelectric materials, especially when 

multiple cracks are involved. 

In the theoretical studies of crack problems, several different electric boundary conditions at 

the crack surfaces have been proposed by numerous researchers. For example, for the sake of 
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analytical simplification, the assumption that the crack surfaces are impermeable to electric fields 

was adopted by Deeg [1~ , Pak [0-'33 , Sosa and Pak [4] , Sosa [5'6] , Suo, Kuo,  Barnett and 

Willis [71 , Park and Sun Is] ; Zhang and Tong ~9] ; Gao,  Zhang and Tong fl~ ; Wang [113 ; Narita 

and Shindo[12'13]; Zhou, Wang and Cao [14] and Yu and Chen E15] . In these models, the 

assumption of the impermeable cracks refers to the fact that the crack surfaces are free of surface 

charge and thus the electric displacement vanishes inside the crack. In fact, cracks in piezoelectric 

materials consist of vacuum, air or some other gas. This requires that the electric fields can 

propagate through the crack, so the electirc displacement component perpendicular to the crack 

surfaces should be continuous across the crack surfaces. However, due to much simpler treatment 

from a mathematical point of view, the impermeable crack and the conducting crack are still 

employed extensively in the study of the crack problems of piezoelectric materials. For the 

permeable crack model, Zhang and Hack E16] analyzed crack problems in piezoelectric materials. 

In addition, usually the conducting cracks which are filled with conducting gas or liquid are also 

applied to be a kind of simplified cracks models in piezoelectric materials by many researchers, 

such as McMeeking r173 and Suo E18] . Recently, DLlnn [19] , Zhang and Tong [2~ and Sosa and 

Khutoryansky ~1] avoided the common assumption of electric impe.,meability and utilized more 

accurate electric boundary conditions at the rim of an elliptical flaw to deal with anti-plane 

problems in piezoelectricity. They analyzed the effects of electric boundary conditions at the crack 

surfaces on the fracture mechanics of piezoelectric materials. It is interesting to note that very 

different results were obtained by changing the boundary conditions. Most recently, Soh, Fang 

and Lee [v-l have investigated the behavior of a bi-piezoelectric ceramic layer with an interfacial 

crack by using the dislocation density function and the singular integral equation method for two 

different crack surface boundary conditions, respectively, i . e .  permeable and impermeable. To 

our knowledge, the electro-elastic behavior of two parallel symmetric permeable cracks under 

anti-plane shear loading in piezoelectric materials has not been studied. Accordingly, there is a 

need to investigate the electro-elastic fracture problem of multi- cracks in piezoelectric materials. 

In the present paper, the interaction between two parallel symmetrical cracks subjected to 

anti-plane shear loading in piezoelectric materials is investigated using the Schrnidt method [23] . It 

is a simple and convenient method for solving this problem. Fourier transform is applied and a 

mixed boundary value problem is reduced to two pairs of  dual integral equations. In solving the 

dual integral equations, the gaps of the crack surface displacement are expanded in a series of 

Jacobi polynomials. This process is quite different from that adopted in previous works 

(Refs.  [ 1 - 131, [ 15 - 221 ) . The form of solution is easy to understand. Numerical examples 

are provide to show the effect of the geometry of the cracks upon the stress intensity factor of the 

cracks. 

1 F o r m u l a t i o n  of the  P r o b l e m  

It is assumed that there are two parallel symmetric cracks of length 2l  in piezoelectric 

materials as shown in Fig. 1. h is the distance between the two cracks. The piezoelectric 

boundary-value problem for anti-plane shear is considerably simplified if we consider only the out- 

of-plane displacement and the in-plane electric fields. As discussed in Soh'  s [z~-] work, since no 

opening displacement exists for the present anti-plane problem, the crack surfaces can be assumed 
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to be in perfect contact.  Accordingly,  permeable condition will be enforced in the present study, 

i. e . ,  both the electric potential and the normal electric displacement are assumed to be continuous 

across the crack surfaces. So the boundary conditions of  the present problem am (In  this paper,  

we just consider the perturbation field) 

lO(1) W(2) _41) _(2) 55(1) = 55(2) D4yl) (2) = , ryz = %.z , , = Dy , y = h I x l >  l ,  (1)  

w42> w(..,> r DT (? = , . = r>., , = , = D , y = 0 I x I >  l ,  (2)  

T(1) ~-- Z.(2) r 55(2) (> = Oy , y = h I x l ~ <  1, (3)  yz yz = - r o ,  = , D 1) (2) 

r(2) _43) 55(2) 55(3) (2) = D03) yz = %.z = -  r 0 ,  = , D~. , y = 0 I x I~< l ,  ( 4 )  

w 41) = w (2) = w (3) = 0 for  (X 2 + y2)1/2 --~ ~ ,  ( 5 )  

where r ,k,  Dk (k  = x ,  y )  are the anti-plane shear stress and in-plane electric displacement, 

respectively, w and 55 am the mechanical displacement and the electric potential. Note that all 

quantities with superscript k (k  = 1 , 2 , 3 )  refer to the upper haft plane 1, the layer 2 and the 

lower half plane 3 as in Fig.  1, respectively. In this paper,  we only consider that r0 is positive. 

The constitutive equations can be written as 

r~k = c44w,k  + e l s e , k ,  (6)  

Dk = e l s w , k  - El155,k, (7)  

c44, e15, ell are the shear modulus,  piezoelectric 

coefficient and dielectric parameter, respectively. The 

anti-plane governing equations are [2z3 

C44 V2W + el5 V255 = O, 

el5 ~72w - Ell V255 = 0 ,  

Y 1 

h 2 

( 8 )  F i g .  1 Two parallel syumaetric cracks 

(9)  in a piezoelectric material 

where V = - / y x -  + 3 2 / 3 y  2 is the two-dimensional 

Laplace operator. Because of  the assumed symmetry in geometry and loading, it is sufficient to 

consider the problem for 0 ~< x < ~ ,  0 ~< y < ~ only.  A Fourier transform is applied to 

Eqs. (8)  and ( 9 ) .  Assume that the solutions are 

w ( 1 ) ( x ' Y )  = o A l ( S ) e - " Y e ~  

( y  I> h ) ,  (10)  

L r ( x ' Y )  e a S w ( 1 ) ( x ' Y )  + B l ( s ) e - " Y c ~  
~11 0 

I  f a, s>e'y sy w ( 2 ) ( x , y )  = _ + B 2 ( s ) e  ] c o s ( s x ) d s  

l r  e l S w ( Z ) ( x  . . . .  2 F" [ C~(s )e_ ,y  + n , ( s ) e V ' ] c o s ( s x ) d s  (11) 
~ 1 1  ) - 

(h>. y>~O), 



1360 ZHOU Zhen-gong and WANG Biao 

I 2 [ | A3 ( s ) e*r cos( sx )ds w(3)(x 'Y)  = 7 , o  

(y  ~< 0) ,  (12) 

[ r ( x ' Y )  el'Sw(3)(x'Y) + ~ B3(s)e*Ye~ 
Ell 0 

where I1 = c44 + e~5/en, A l ( s ) ,  B l ( s ) ,  A2(s ) ,  B , ( s ) ,  C2(s ) ,  D2(s) ,  A 3 ( s ) a n d  

B 3 ( s )  are unknown functions, and a superposed bar indicates the Fourier transform throughout 

the paper, e .g .  

So from F__qs. (6) and (7) ,  we have 

(1) ____ . ~ f :  8[l(ZAl($)e-Sy + ry, ( x , y )  

els B1 ( s ) e - "  ]cos( sx )ds 

) = ~fOd e l l S B l ( S ) e - S Y c ~  L I D<yl)(x,y 2 = 

(13) 

(y  I> h ) ,  (14) 

- (2) (x 'Y)  = -  0 %.~ fzs[A~(s)e - * y -  B , ( s ) e  'y] + 

el5S[ C2( s)e -'y - D2( s)e'Y ] }cos( sx)ds 

D()?)(x,y) = el lS[C2(s)e  -sy - D2(s)e"]cos(sx)ds  
0 

2f~ 
- ( 3 )  ( x ' ) = 7 o 
%,~ Y s[/zA3(s)eSY + elsS3(s)e 'Y]cos(sx)ds 

2f~ 
/)(3)(x y ) = -  e l l S B 3 ( s ) e S y c o s ( s x ) d s  
--Y ~ "~- 0 

(h  I> y I> 0) ,  (15) 

(y  ~< 0) .  (16) 

For solving the problem, the gap functions of the crack surface displacements and the electric 

potentials are defined as follows: 

f l ( x )  = w O ) ( x , h  +) - w ( Z ) ( x , h - ) ,  (17) 

f ~ l ( X )  = r  - r  (18) 

f 2 ( x )  = w (2)(x,O +) - w (3 ) (x ,O- ) ,  (19) 

f~2(x) = r  - r  (20) 

Substituting Eqs. (10) - (12) into Eqs. (17) - (20),  and applying the Fourier transform and the 

boundary conditions, it can be obtained 

) l ( s )  = [Al(S)  - a2(s )]e  -'h - B2(s )e  sh , (21) 

jCk l (S )  = e l 5 ? l ( S )  + [ g l ( s )  - C 2 ( s ) ] e  -sh - D2(s)e  'h = 0, (22) 
e l l  

j~ : ( s )  _- A2( s )  + B 2 ( , )  - A 3 ( , ) ,  (23) 

fc~z(s) = e15fz(s) + Cz(s)  + Dz(s)  - B3(s)  = 0. (24) 
e l l  
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Substituting Eqs. (14) - (16) into F_qs. (1) - ( 4 ) ,  it can be obtained 

p A l ( s ) e  -'h + e l s B l ( s ) e  -'h = ~ [ A 2 ( s ) e  -'h - B z ( s ) e  "hI + 

e15[ C z ( s ) e  -'h - D z ( s ) e ' h ] ,  : (25)  

[ B a ( s )  - C z ( s ) ] e  -2'h + D z ( s )  = 0, (26) 

,u [Az(s )  - B e ( s ) ]  + e15[C~(s) - O2(s ) ]  = -  lzA3(s) - e~sB3(s ) ,  (27) 

C2(s ) - D2(s ) + B3(s)  = 0. (28) 

By solving eight Eqs. (21)  - (28)  with eight unknown functions Al(S), gl(S), A2(s ) ,  

B z ( s ) ,  C z ( s ) ,  D 2 ( s ) ,  A3(s ) ,  B3(s)  and applying the boundary conditions (3) - ( 4 ) ,  we 

can obtain 

fo sc44[]'i(s) + e- ' f z ( s ) ] c o s ( s x ) d s  = rrr0, I x  I~< t ,  (29) 

f ~sc~4E~(s) e- 'h~l(s)3cos(sx)ds i x  i<  z ,  (30) + 
0 

f : g C l ( s ) c o s ( s x ) d s  = O, I x I>  l ,  (31) 

f |  o, I t>  l.  (32) X 
0 

From Eqs. (29) - (32) ,  it can be obtained 

{ j~l(s)  = ) z ( s )  ~ f , ( x )  = f 2 ( x ) ,  

(1) _(2) r _ r~.~ ) (x  ,0) (3) (x ,0) (33) ~ .  ( x , h )  = , h )  

S o f r o m E q s . ( 1 4 ) - ( 1 6 )  it can be obtained D ( ~ ) ( x , h )  = D(yZ)(x,h) D(Z)(x,0)  = 

D(~? ) ( x ,0 ) .  To determine the unknown functions }'1 ( s ) and J~2 ( s ) ,  the dual-integral equations 

(29) - (32) must be solved. 

2 Solution of the Dual Integral Equation 

The Schmidt method [23] is used to solve the dual integral equations (29) - (32) .  The gap 

functions of the crack surface displacement are represented by the following series: 

| 1 
f l ( ~ )  = f2(X) = G ~(112,112)(/) ( X~)2 a~l-'2~_ 2 1 - for 1 ~< x~< l ,  y = 0, (34) 

n = l  

where a= is unknown coefficients to be determined and p(W_,ln) (x )  is a Jacobi polynomial [u] 

The Fourier transform of Eq. (34) are ['-53 

9C1(s) = ~a,G, . . ,  + J z , _ l ( s l ) ,  G, = 2ff-~(- 1) "-1 r(2,~_ -: ~ . ~ -  1/2),  (35) 

where F( x ) and J ,  ( x ) are the Gamma and Bessel functions, respectively. 

Substituting Eq . (35)  into Eqs. (29) - ( 32 ) ,  Eqs. (31) ' (32)  has been automatically 

satisfied, respectively. Then the Eq. (29) reduces to the form after integration with respect to x 

f o r -  l < x < l ,  
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~ "  f =  e ~ - ~ [ 1  + e - ' h ] J z . _ l ( s l ) s i n ( s x ) d s  = ~rr0 x.  ~ a , G , ,  o s 

�9 ~ '~5 From the relataonshlp [- 
'sin[ na r c s in (b / a )  ], 

1 j  (sa)sin(bs)ds = a~sin(nTt/2) 
0 S n 

. n l b  + , / b"  - a"3 ~  

The semi-infinite integral in Eq. (36) can be modified as 

f ;  l [ l s  + e-"h]J'-~-'(sl)sin(sx)ds = 

2n 1 l s i n [ ( 2 n -  1 ) a r c s i n ( / ) ]  + f ;  

a > b ,  

b > a .  

(36) 

(37) 

Using Eqs. (39) - (42) ,  we obtain 

d l l  

dza 

D~t = d31 

M. i a. = ~----aqJ -~ with qj 
j = n  

electric displacement can be obtained. However, in fracture mechanics, it is of importance to 

determine the perturbation stress ry~ and the perturbation electric displacement Dy in the vicinity of 

the crack's tips. r(l)y~ , r(Z)y~, ~-(3)y~ , D(1), , Dy('-) and D(y 3) along the crack line can be expressed 

respectively as 

(43) 

Intensity Factors 

The coefficients a,~ are known, so that the entire perturbation stress field and the perturbation 

d12 d13 "'" d l~ )  

/ d22 d~ "'" d2. 

d3z d33 ... d3n ], 

l 
d~2 d.3 "'" d=. ) 

For a large s ,  the integrands of the semi-infinite integral in Eq. (38)  are almost all e -'h . Thus 

they can be evaluated directly by Filon' s method [26] . F-x 1. (36 )  can now be solved for the 

coefficients a~ by the Schmidt method [~] . For brevity, the Eq. (36) can be rewritten as 

~ a . E . ( x )  = V ( x ) ,  - Z < ~ < Z, ( 3 9 )  
n = l  

where E.  ( x ) and U( x ) are known functions and the coefficients a .  are to be determined. A set 

of functions P .  ( x ) which satisfy the orthogonality condition 

f l_ ,p . , (x )P~(x)dx  = N,~8,~, N~ = f l z p : ( x ) d x ,  (40) 

can be constructed from the function, E. ( x ) ,  such that 

" mi,~ 
P . ( x )  = ~ M-~. E i ( x ) ,  (41) 

i=1  

where Mij is the cofactor of the element dq of D . ,  which is defined as 

1 s h -  --e-  J2~_l(Sl)sin(sx)ds. (38) 
$ 
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r,,z(1)(x, h) = ,r(2) ( x ,  h ) y z  ---- /'--(2) ( 9g , O ) y z  = ~--(3) (gg, O ) y z  = 

c - 4 4 2 a . G . f o [ l  + e-*h]J,._1(sl)cos(xs)ds,  (44) 
n = l  

O(yl)(x h) = e~?) (x ,h )  = D~')(x,O) = D(3)(x,O) = 

e152ctnGnfo[1 + e-'h]J%_l(Sl)eos(xs)ds. (45 )  

An examination of Eqs. (44) and (45) ,  the singular part of the stress field and the singular part 

of the electric displacement can be obtained respectively from the relationship [25] 

[cos[ narcsin( b / .  )1,  

f o  = /l----~Ta2--~bT----a sin(n~z,2) a > b, J,, ( sa )cos( bs)ds �9 (46) 

a2] " '  b > a .  

The singular part of the stress field and the singular part of the electric displacement can be 

expressed respectively as follows ( l < x) : 

r -  c 4 4 2 a , G , n , ( x ) ,  

- -  a , G , H , ( x ) ,  
n = l  

where H , ( x )  = ( -  1)"-x lZ"-I 
2 - z ' - E x  + 127 "-~ " 

We obtain the stress intensity factor K as 

K = lim ~/27t(x - l ) ' r  - 2 c 4 4 +  
, - c  4 7  

We obtain the electric displacement intensity factor D L as 

DL = lim V / ~ ( x  I ) ' D  - 2e15 ~ P(2n  - 1/2) 
, - c  ~ _  = a .  ( 2 n  - 2 ) ]  - 

(47) 

(48) 

P (2n  - 1/2) (49) 
an (2n - 2 )  ! 

e15 
K. (50) 

C~ 

4 N u m e r i c a l  C a l c u l a t i o n s  a n d  D i s c u s s i o n  

From the works [27- 34], it can be seen that the Schmidt method is performed satisfactorily if 

the first ten terms of the infinite series (39) are obtained. The stress intensity factor K and the 

electric displacement intensity factor Dr are calculated numerically. The results of the present paper 

axe shown in Figs.2 to 7. From the results, the following observations axe very significant: 

( [ ) The stress and the electric displacement intensity factors depend on the crack length 

and the distance between two parallel cracks. 

( 11 ) The stress and the electric displacement intensity factors of the two parallel cracks 

decrease when the distance between cracks decreases. However, the stress and the electric 

displacement intensity factors of the two parallel cracks decrease when the length of cracks 

increases. This phenomenon is called crack shielding effect. 
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( ii[) The electric displacement intensity factors for the permeable  crack surface conditions 

are much smaller than the results for the impermeable crack surface conditions as shown in Fig.  3,  

F i g . 5 ,  F ig .7  and in Eq.  ( 5 0 ) .  

( iV ) The stress intensity factor does not depend on the material constants.  However ,  the 

electric displacement intensity factor depends on the shear modulus and the dielectric parameter .  
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